

Co-Processed Ceramic Insulation

for High Field Accelerator Magnets

VLHC Magnet Technologies Working Group Workshop II: Magnets for a Very Large Hadron Collider

May 24-26, Fermilab, Batavia, IL

Presented by:

John Rice & Michael L. Tupper

Ph: (303) 664-0394 • Fax: (303) 664-0392 • E-mail: Mike@CTD-materials.com

Material Solutions...

Insulation • Adhesives • Coatings • Composites

COMPOSITE TECHNOLOGY DEVELOPMENT, INC.

World's Largest Magnet

The ITER Central Solenoid (CS) Model Coil

- Successfully tested recently in Japan
 - One of the world's largest superconducting magnets
 - Coil ramped to 13T; no training or quench was observed
 - CTD-112P pre-preg epoxy is the primary insulation!

- CTD developed radiation resistant glass/epoxy insulation for use in ITER superconducting magnets.
 - Met ITER property requirements after exposure to >109 Rads
 - CTD developed insulation application processes and provided extensive engineering and material testing support

Co-Processed Ceramic Insulation for VLHC Magnets

- Review of Magnet Insulation Needs
- Introduction to Wrappable Ceramic Insulation
- Thermal Expansion
 - Wrappable Ceramic Insulation vs. Glass Epoxy Insulation
 - Comparison of Conductor / Insulation Stacks
- Approach to lowering the cost of the Wrappable Inorganic Insulation
 - New matrix materials
 - New reinforcement materials
 - New application techniques
 - Pre-preg tape
 - Vacuum Pressure Impregnation (VPI)
- Impact of Wrappable Ceramic Insulation on overall magnet costs

Goals for New Insulation

Magnet Goals

- Improve magnet performance
- Reduce magnet costs
- Improve reliability/reduce risk
- New insulation application processes
 - Greater latitude for the coil designer

Insulation Parameters

- Mechanical Properties
 - Improve toughness, modulus, strength
- Increase Electrical Properties
 - Increase dielectric strengths
 - Enable close packing
- Thermal Properties
 - Match thermal contraction
 - Increase thermal conductivity
- Radiation
 - Reduce organic content
- Chemical Compatibility
 - Address poisoning issues in A15 and HTS
- Wind and react
 - Co-react insulation with superconductor
 - Reduce manufacturing time/cost

What is Wrappable Ceramic Insulation

- Electrical insulation with properties similar to or better than epoxy insulation while using conventional processing methods
 - Enhanced radiation resistance
 - Up to 2x modulus performance
- Apply insulation BEFORE heat treatment
 - Ceramic fibers and inorganic binder applied prior to heat treatment
 - Epoxy impregnation performed after heat treatment
- Process using SAME equipment as epoxy insulation and under the SAME superconductor heat treatment conditions
- Coil can be handled as a monolith
 - After initial cure of inorganic binder
 - During and after heat treatment
 - No special tooling required

Thermal Expansion Characterization

Comparison of conductor and ceramic insulation thermal expansion

COMPOSITE TECHNOLOGY DEVELOPMENT, INC.

Thermal Expansion of Composite Stacks

Insulation Cost Reduction Efforts

- Identified alternative matrix formulations with lower costs
 - Need to evaluate matrix performance
 - New matrices designed for pre-preg and VPI
 - Will investigate all inorganic systems
- Ceramic fiber reinforcement

Ceramic fabric tape, CTD CF100; 12.5 mm wide x 0.125 mm thick

Lower cost alternative for custom woven ceramic tape

Insulation Cost Reduction Efforts

- Lower cost alternatives for ceramic reinforcement
 - Insitu braiding of ceramic fibers onto superconducting cable

Insulation Cost Reduction Efforts

- Fiber heat treatment options
 - Ceramic fabric is heat treated to achieve best laminate properties
 - What is the impact of the heat treatment on stack performance?
- Alternative ceramic fibers, fabrics, and papers
 - Identify and evaluate commercially available new or alternative reinforcements
 - Will consider modification to commercial products to meet magnet

insulation needs

Glass Fiber Reinforcement

Glass Fiber Reinforcement

Impact of Wrappable Inorganic Insulation on Overall Magnet Costs

- Feedback from magnet researchers
 - Big change in how magnets perform
 - Better mechanical and radiation performance
 - Simplified, lower cost, lower risk coil fabrication
- Inorganic binder enables:
 - Use of existing tooling used with NbTi coils
 - Coil behaves as a monolith
 - Before, during, and after heat treatment
- Interest in quantifying savings
 - Reduced manufacturing costs
 - Improved performance
 - Reduced scrap rate

